Bibliography: Data Science
Géron, A. (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.), Sebastopol, CA: O'Reilly Media, Inc.
Goodfellow, I., Bengio, Y., and Courville, A. (2016), Deep Learning, Cambridge, MA: MIT Press.
Hastie, T., and Tibshirani, R., and Friedman, J. (2009), The Elements of Statistical Learning, (2nd ed.), New York, NY: Springer Science+Business Media, LLC.
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2021), An Introduction to Statistical Learning, (2nd ed.), New York, NY: Springer Science+Business Media, LLC.
Kuhn, M., and Johnson, K. (2013), Applied Predictive Modeling, New York, NY: Springer Science+Business Media, LLC.
Provost, F., and Fawcett, T. (2013), Data Science for Business, Sebastopol, CA: O'Reilly Media, Inc.
Goodfellow, I., Bengio, Y., and Courville, A. (2016), Deep Learning, Cambridge, MA: MIT Press.
Hastie, T., and Tibshirani, R., and Friedman, J. (2009), The Elements of Statistical Learning, (2nd ed.), New York, NY: Springer Science+Business Media, LLC.
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2021), An Introduction to Statistical Learning, (2nd ed.), New York, NY: Springer Science+Business Media, LLC.
Kuhn, M., and Johnson, K. (2013), Applied Predictive Modeling, New York, NY: Springer Science+Business Media, LLC.
Provost, F., and Fawcett, T. (2013), Data Science for Business, Sebastopol, CA: O'Reilly Media, Inc.
Top 20 | Actuarial Science | Audiobooks | Bayesian Statistics | Biostatistics | Data Science | Elementary | Employment
Favorites | Finished | History | Logistic Regression | MS in Statistics | Popular | Primer | Programming | Statistics | Time Series
Favorites | Finished | History | Logistic Regression | MS in Statistics | Popular | Primer | Programming | Statistics | Time Series